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Abstract: In this paper we describe a technique that we have used in a number of publications to find the “water-
shed” under which the initial condition of a positive solution of a nonlinear reaction-diffusion equation must lie, so
that this solution does not develop into a traveling wave, but decays into a trivial solution. The watershed consists
of the positive solution of the steady-state problem together with positive pieces of nodal solutions ( with identical
boundary conditions). We prove in this paper that our method for finding watersheds works in Rk, k ≥ 1, for
increasing functions f(z)/z. In addition, we weaken the condition that f(z)/z be increasing, and show that the
method also works in R1 when f(z)/z is bounded. The decay rate is exponential.
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1 Introduction
One of the interesting situations in thermodynamics is
to study the behavior of a heat equation when the ini-
tial condition to the problem begins in a neighborhood
of an unstable solution of the associated steady-state
problem. For simplicity, in this introduction, we will
illustrate what we mean in one space dimension, leav-
ing the details about Rk to Section 2. Consider the
reaction-diffusion equation

ut = δuxx + f(u), x ∈ Ω, t > 0, (1)

where δ is a nonnegative diffusion coefficient and
Ω = [a, b] is a closed bounded interval on the reals.
Suppose that we want the solution of (1) to satisfy
Neumann boundary conditions

ux(a, t) = 0 = ux(b, t), t > 0, (2)

and that f(u) = 0 has several roots, u = uj , j =
0, 1, ..., n. Then each of these roots is a solution to
the problem (1)-(2), so that the problem has multiple
constant stationary solutions. When δ = 0, the prob-
lem is a first-order differential equation (in t for each
x) with multiple constant solutions. The solutions are

stable when f ′(uj) < 0, unstable when f ′(uj) > 0,
and their stability can be determined by analyzing the
higher order terms of the Taylor series of f(u) at uj
when f ′(uj) = 0. Assume we are given the initial
condition

u(x, 0) = ϕ(x), a ≤ x ≤ b. (3)

If ϕ(x) lies entirely in the trough between a stable and
an unstable constant solution, it will tend (for each x)
to the stable solution, while if part of ϕ(x) lies in one
trough while the rest belongs to an adjacent trough,
with the unstable solution between, the parts in each
trough will tend to the stable solutions forming sta-
tionary fronts.

When δ > 0, and ϕ(x) lies in a single trough, the
solution u again approaches the stable constant solu-
tion, but if different parts of ϕ(x) lie in two adjacent
troughs as above, then u(x, t) will be influenced by
both the diffusion term and the different stable con-
stant solutions. Parts of u(x, t) will move trying to ad-
just and produce, in some cases, nonstationary fronts,
called traveling waves, first investigated in the cel-
ebrated papers of Fisher [5] and Kolmogoroff et al.
[6]. Although traveling waves are common, and have
a substantial literature (see Fife [4], even when ϕ(x)
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lies in two adjacent troughs, the solution u(x, t) need
not form a traveling wave. Instead, the solution u(x, t)
may collapse directly to one of the stable constant so-
lutions, or blow up if not bounded by a stable solution
above. Chen and Derrick [1] studied this situation for
Dirichlet boundary conditions in Rk, and in Derrick
et al. [2] and [3] we studied it for Neumann bound-
ary conditions in R1. In Section 2 of this paper we
prove that the technique works for bounded domains
in Rk with boundary conditions αun = βu, with α, β
not both 0. We showed in Derrick et al. [3] that the
positive and existing nodal solutions (for sufficiently
small δ > 0) of the steady-state problem

δvxx + f(v) = 0, x ∈ Ω, (4)

with identical boundary conditions, form a watershed
v∗(x) (see Watt et al. [7]) when patched together ap-
propriately. If ϕ(x) lies between the watershed v∗(x)
and a stable solution uj(x), then the solution will col-
lapse to uj(x), even though ϕ(x) may intersect an un-
stable solution uj±1(x) repeatedly. If we divide (4) by
δ, we obtain a nonlinear eigenvalue problem with 1/δ
as the eigenvalue; higher eigenvalues lead to increas-
ing nodes, so the smaller δ is, the more nodal solutions
may exist.

In the sections that follow, we will assume with-
out loss of generality that the trivial solution u ≡ 0
is stable and some positive solution v of (4) bounds
the initial condition ϕ. This is not a restriction since
it is frequently possible to recast the problem this way
by substitution. We will assume that the function f
is piecewise continuous, and that f(0) = 0. In the
papers Chen and Derrick [1], and Derrick et al. [2],
[3], we required that the function f(u)/u be increas-
ing in u, over the range of v. Typical functions f(u)
that apply are up, p > 1, u(1 + up), and eu − 1, for
u ≥ 0, u(0.5 − u)(1 − u) over 0 ≤ u ≤ 0.75, and
certain zeros of the Kamenetskii combustion equation
e−1/u−δ(u−a). Many other functions will also work.
The requirement that f(u)/u be increasing is not nec-
essary: one of the main results in this paper (Sections
3 and 4 for R1) will be to remove that condition, and
to replace it by boundedness.

2 Preliminaries
Let Ω be the closure of a bounded domain in Rk, k ≥
1, and let its boundary ∂Ω be C1 (for k > 1), so that
normal derivatives will exist. Consider the reaction-
diffusion problem

ut = δ∆u+ f(u), x ∈ Ω, t > 0,
αu(x, t) = βun(x, t), x ∈ ∂Ω, t > 0,

u(x, 0) = ϕ(x), x ∈ Ω,
(5)

where δ is a positive diffusion coefficient, α and β
are not both zero, and n is the unit outward normal to
Ω. Let v(x) be a steady-state solution to problem (5);
hence v solves

δ∆v + f(v) = 0, x ∈ Ω,
αv(x) = βvn(x), x ∈ ∂Ω.

(6)

Suppose that positive solutions u(x, t) to problem
(5) and v(x) to problem (6) both exist, and that 0 ≤
u(x, t) < λv(x), 0 < λ < 1, for every x ∈ Ω and
0 ≤ t ≤ T . Then the function

gn(t) =

∫
Ω

un+2(x, t)

vn(x)
dx =

∫
Ω

(
u

v

)n+2

v2dx,

n ≥ 1,
(7)

is properly defined for all 0 ≤ t ≤ T , since
(u/v)n+2 ≤ λn+2 < 1. Indeed, (gn(t))

1
n+2 is the

Ln+2-norm of (u(., t)/v) over Ω with respect to the
measure v2dx:

gn(t) =

(
∥ u

v
∥n+2

)n+2

. (8)

Note that with this strong condition imposed on u
and v, gn(t) decreases monotonically as n increases,
for each t in 0 ≤ t ≤ T .

Lemma 1 Let u and v be positive solutions of prob-
lems (5) and (6), respectively. Then

g′n(t) = (n+ 2)

{∫
Ω

un+2

vn

(
f(u)

u
− f(v)

v

)
dx

−δ(n+ 1)

∫
Ω

un

vn+2
|v∇u− u∇v|2dx

}
.

(9)

Proof: Differentiating (7) with respect to t inside
the integral sign and replacing ut by the right side of
the first equation of (5) we have

g′n(t) = (n+ 2)

∫
Ω

un+1

vn
(δ∆u+ f(u))dx.

By the first equation in (6)

0 = (n+ 2)

∫
Ω

un+2

vn+1
(δ∆v + f(v))dx,

so, if we subtract,

g′n(t) = (n+ 2)

{∫
Ω

un+2

vn

(
f(u)

u
− f(v)

v

)
dx
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+δ

∫
Ω

(
u

v

)n+1

(v∆u− u∆v)dx

}
.

Using Green’s theorem on the second integral above
yields ∫

Ω

(
u

v

)n+1

(v∆u− u∆v)dx

= −(n+ 1)

∫
Ω

(
u

v

)n

|∇u|2dx

+n

∫
Ω

(
u

v

)n+1

∇u∇vdx

+(n+ 2)

∫
Ω

(
u

v

)n+1

∇u∇vdx

−(n+ 1)

∫
Ω

(
u

v

)n+2

|∇v|2dx

+

∫
∂Ω

(
u

v

)n+1

(vun − uvn)dx,

or

∫
Ω

(
u

v

)n+1

(v∆u− u∆v)dx

= −(n+ 1)

∫
Ω

(
un

vn+2

)
|v∇u− u∇v|2dx

(10)

+

∫
∂Ω

(
u

v

)n+1

(vun − uvn)dx.

From the boundary conditions in (5) and (6), ei-
ther u = v = 0 (when β = 0), or un = vn = 0
(when α=0), or un = (α/β)u and vn = (α/β)v on
∂Ω, so that vun − uvn = 0, when un and vn are the
normal derivatives of u and v for x ∈ ∂Ω. Since
0 < (u/v) < λ, this shows that the integral on ∂Ω
is zero. ⊓⊔

Remark 2 If k = 1, then Ω = [a, b] and the bound-
ary term in (10) becomes(

u

v

)n+1

(vux − uvx)

∣∣∣∣∣
a

b

,

which is zero for the boundary conditions in (5)-(6),
which include the following common conditions:

u(a, t) = 0 = u(b, t), t ≥ 0,

and v(a) = 0 = v(b) (Dirichlet),

u(a, t) = 0 = ux(b, t), t ≥ 0,

and v(a) = 0 = vx(b) (Mixed),

ux(a, t) = 0 = u(b, t), t ≥ 0,

and vx(a) = 0 = v(b) (Mixed),

ux(a, t) = 0 = ux(b, t), t ≥ 0,

and vx(a) = 0 = vx(b) (Neumann).

Furthermore, the boundary term is also zero for peri-
odic conditions

u(a, t) = u(b, t), ux(a, t) = ux(b, t),

t ≥ 0 and v(a) = v(b), vx(a) = vx(b).

When k = 1, equation (9) becomes

g′n(t) = (n+ 2)

{∫ b

a

un+2

vn

(
f(u)

u
− f(v)

v

)
dx

−δ(n+ 1)

∫ b

a

un

vn+2
|vux − uvx|2dx

}
.

(11)
We used the strong condition 0 ≤ u(x, t) ≤

λv(x), 0 < λ < 1, for all x ∈ Ω and 0 ≤ t ≤ T
to properly define gn(t) above, but a much weaker as-
sumption will do the job for certain functions f .

Lemma 3 Let f(z)/z be an increasing function for
z ≥ 0. If 0 ≤ ϕ(x) < λv(x), λ < 1, where ϕ is
defined in problem (5) and v is the positive solution of
the steady state problem (6). Then the positive solu-
tion u to problem (6) satisfies 0 ≤ u(x, t) < λv(x),
for all t > 0 and x ∈ Ω.

Proof: Since u(x, 0) = ϕ(x) < λv(x) with λ <
1, u(x, t) < v(x) for all x ∈ Ω with t near 0. Assume
there are xj ∈ Ω, tj > 0 for which u(xj , tj) ≥ v(xj),
and let t0 > 0 be the least of these numbers tj . Since
v > u ≥ 0 in Ω× [0, t0), the monotonicity of f(z)/z
implies that in (9) the first integral is negative, so that
g′n(t) < 0. Hence gn(t) < gn(0) for 0 < t < t0.

Taking (n+2)-nd roots in this last inequality, we
get the Ln+2-norms (with measure v2dx)

||u
v
||n+2 =

(∫
Ω

(
u

v

)n+2

v2dx
) 1

n+2

≤
(∫

Ω

(
ϕ

v

)n+2

v2dx
) 1

n+2 = ||ϕ
v
||n+2,

for t ∈ [0, t0). Since the Ln+2-norm tends to the L∞-
norm as n → ∞ (see the Appendix), we have by con-
tinuity
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u(x0, t)

v(x0)
≤ sup

Ω

u

v
≤ sup

Ω

ϕ

v
< λ < 1 (12)

for t in [0, t0].

This contradicts the assumption that u(x0, t0) ≥
v(x0). Hence, u(x, t) < v(x) for all x ∈ Ω, t ≥ 0.
Thus, the first integral in (9) is always negative, so the
second inequality in (12) holds for all t ≥ 0. Hence,
0 ≤ u(x, t) < λv(x), for all x ∈ Ω and t > 0. ⊓⊔

It is not necessary to assume f(z)/z is increasing
for all z ≥ 0, but simply over the watershed.

We have shown that the solutions u(x, t) stay be-
low v(x) for all t. We now show that u(x, t) decays
exponentially to zero, implying that the steady state
solution v(x) is repelling.

Theorem 4 Let f(z)/z be an increasing function for
0 ≤ z ≤ maxΩ v. If 0 ≤ ϕ < λv, λ < 1, where v is
the solution of the steady state problem (6), then there
exists a constant c0 > 0, so that the solution u to (5)
satisfies

u(x, t) < λv(x) exp(−c0t) (13)

for all t > 0 and x ∈ Ω.

Proof: We showed at the conclusion of Lemma 3
that u(x, t) ≤ λv(x) < v(x) for all t > 0, so there is
a constant c0(x) such that

(f(v(x))
v(x)

− f(u(x, t))

u(x, t)

)
≥ c0(x) > 0, (14)

for each x in Ω. But Ω is compact, so c0 =
minΩ c0(x) exists and c0 > 0. By (9)

g′n(t) = (n+ 2)

{∫
Ω

un+2

vn

(
f(u)

u
− f(v)

v

)
dx

−δ(n+ 1)

∫
Ω

un

vn+2
|vux − uvx|2dx

}

≤ −(n+ 2)

∫
Ω

un+2

vn

(
f(v)

v
− f(u)

u

)
dx

≤ −c0(n+ 2)gn(t).

Integrating this inequality we obtain

gn(t) ≤ gn(0) exp(−c0(n+ 2)t),

and again, taking the (n + 2)-nd root of both sides,
and letting n → ∞, we have in the L∞(v2dx)-norm:

u(x, t)

v(x)
≤ sup

Ω

u

v
≤ sup

Ω

ϕ

v
exp(−c0t)

< λ exp(−c0t).

⊓⊔

Remark 5 Note that in Theorem 4 the monotonicity
of f(z)/z insures that g′n(t) < 0, which guarantees
that gn(t) is decreasing for all t. However, it may
not be necessary to require that f(z)/z be increasing,
because the second integral in (11), if nonzero, is mul-
tiplied by (n + 2) which, for sufficiently large n, will
dominate the first integral, if it is bounded. Thus, it
is critical to determine under what conditions the sec-
ond integral is zero. This will be the topic (in k = 1
dimension) that we study in the next section.

3 Conditions in 1-dimension under
which the second integral in (11) is
zero

In order for the second integral in the right side of
equation (11) to be zero it is necessary that |vux −
uvx|2 = 0 , or equivalently that

vux = uvx or
ux
u

=
vx
v
. (15)

We integrate to obtain lnu = ln v+ k, with k = k(t).
Hence, only when u = K(t)v is it possible for the
second integral to be zero. But can such a u(x, t) be a
solution to problem (5)?

We now show an example of a situation where
u(x, t) = K(t)v(x), with K(t) a function only of the
variable t (so that the second integral in (11) is equal
to zero), for a more general set of problems than (5)-
(6), with Dirichlet or mixed boundary conditions and
a constant multiple of v as the initial function ϕ.

Example 1. (Dirichlet case) Consider the problem
(in [0, π] × (0,∞))

ut = uxx + u(u2 + u2x), u(0, t) = u(π, t) = 0,

with initial value ϕ(x) = sinx/
√
1 + c . It is trivial

to check that

u(x, t) =
sinx√
1 + ce2t

is a solution of this problem, while v(x) = sinx is a
solution of the steady-state problem

vxx + v(v2 + v2x) = 0, v(0) = v(π) = 0.
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If c > 0, then
√
1 + c = λ−1 > 1, implying

that ϕ(x) = u(x, 0) < λv(x), and we observe that
u(x, t) → 0 as t → ∞. The decay is exponential.
When −1 < c < 0, then

√
1 + c = λ−1 < 1, so

ϕ(x) > λv(x). In this case u(x, t) blows up when
ce2t = −1. Note that u(x, t) = K(t)v(x), indicating
that the second integral in (11) is zero.

Observe that this example also holds on [0, π/2]×
(0,∞) for the same functions for the first mixed
boundary conditions, and replacing all the sines by
cosines will make it work for the other mixed one, or
the Neumann conditions.

Although Example 1 shows that it is possible for
a solution to a more general set of problems than (5)-
(6) to satisfy u(x, t) = K(t)v(x), this cannot happen
for nonlinear problems (5)-(6).

Theorem 6 Let f(u) be an analytic function, and let
u(x, t) and v(x) be positive solutions, respectively, of
the equations

ut = δuxx + f(u) and δvxx + f(v) = 0.

Then u(x, t) = K(t)v(x), with K not identically
equal to 1, can only happen when f(u) is homoge-
neous of degree 1 and K is a constant.

Proof: Substituting u(x, t) = K(t)v(x) into the
parabolic equation, we obtain by (6)

K ′v = KDvxx + f(Kv) = f(Kv)−Kf(v).

Assume that f(v) =
∑∞

n=0 βnv
n. Then we can

rewrite the two ends of the above equation as

K ′v = β0(1−K) +
∞∑
n=2

βn(K
n −K)vn.

Matching powers of v, we get K ′ = 0, implying
that K is constant. If |K| ̸= 1, then all the βn =
0 except β1, yielding f(u) = β1u, homogeneous of
degree 1. Clearly K ̸= −1, since the solution u is
positive. Finally, if K ≡ 1, then u ≡ v.

Ruling these linear homogeneous of degree 1
problems out is no disadvantage to our technique,
since linear problems can be easily solved by such
classical methods as Fourier expansions. Thus, for
any other analytic function, the second integral in (11)
will not be constantly zero. Hence, there is some hope
that the second integral in (11) may be used to domi-
nate the first integral. This will be what we consider
in the next section, where we show (in one dimension)
that the results in Section 2 also hold for bounded
f(z)/z. ⊓⊔

4 Theorem 4 holds in 1-dimension
for bounded f(z)/z

It is still possible that even though u(x, t) ̸=
K(t)v(x), some individual values of t may exist
where u does equal a constant times v. We will show
now that this only happens at discrete values of t.

Assume W (x, t) = uvx − vux is real ana-
lytic on [a, b] × [0,∞) ≡ Γ. Let Z(W ) =
{(x, t) ∈ Γ : W (x, t) = 0} ̸= Γ. In particular, W an-
alytic implies that Z(W ) has no interior (since then
Z(W ) ≡ Γ). Let E = {t : W (x, t) ≡ 0 for all
x ∈ [a, b]}; that is, E consists of the values t at which
the second integral in (11) is zero.

Lemma 7 E has no finite limit points, that is E =
{0 ≤ t0 < t1 < t2 < ...}.

Proof: If the statement in the Lemma is not true,
there is a sequence {tn} ∈ E, tn → t∗ ∈ E, t∗ < ∞,
and since W is continuous, there is some value x0 ∈
(a, b) for which

W (x, t) =
∑
i≥0

∑
j≥0

Aij(x− x0)
i(t− t∗)j ,

with A00 = W (x0, t
∗) = 0.

Assume that W (x0, t) is not identically zero in t for
0 < |t− t∗| < η. Then

W (x0, t) =
∑
j≥1

A0j(t− t∗)j .

By a generalization of the Weierstrass preparation
theorem (see [8]) we may express W as follows for
some fixed j:

W (x, t) = [(t− t∗)j0 +Aj0−1(x)(t− t∗)j0−1+
...+A1(x)(t− t∗) +A0(x)]G(x, t), j0 ≥ 1,

(16)
where the coefficients Aj(x) are real analytic and G
is nonzero in a neighborhood N of the point P0 =
(x0, t

∗).
For each fixed x′ near x0, the term in square

brackets in (16) is a polynomial in t of degree j0, so
W (x′, t) = 0 can have at most j0 roots in N . But,
since W (x′, tn) = 0 for tn → t∗, W (x′, t) has an in-
finite number of zeros in N , which is a contradiction.
Hence

W (x0, t) =
∑

A0j(t−t∗)j = 0, for t near t∗.

Now choose a direction line L through P0, with
W (x, t) not identically 0 on L near P0. Repeating
the previous process at P0 with L replacing the t-axis
(and rotated coordinates) we get the same contradic-
tion. Hence E has no finite accumulation points. ⊓⊔
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Lemma 8 Let t1 be the first nonzero t in E, let 0 <
t∗ < t1, and let 0 ≤ ϕ < λv, 0 < λ < 1, for all
x ∈ [a, b], where v is the positive solution to problem
(6). Then, if f(z)/z is bounded, the positive solution
u(x, t) to problem (5) satisfies 0 ≤ u(x, t) < λv(x),
for all x in [a, b] and 0 ≤ t ≤ t∗.

Proof: Let 0 ≤ t∗ < t1 and note that on each line
segment (x, t′), a ≤ x ≤ b, for 0 ≤ t′ ≤ t∗, we have
points (xj , t′j) where W 2(xj , t

′
j) > 0. By continuity,

there is an ϵj = ϵj(xj , t
′
j) > 0 such that in the box

B((xj , t
′
j), ϵj) = {(x, t) :

(|x− xj | ≤ ϵj)× (|t− t′j | ≤ ϵj)}

we have W 2(x, t) ≥ 1
2W

2(xj , t
′
j) for all (x, t) ∈

B((xj , t
′
j), ϵj).

Project the interior of the boxes B((xj , t
′
j), ϵj)

onto the t-axis to form the open intervals C(t′j , ϵj) =

{|t − t′j | < ϵj} and note they form an open cover of
[0, t∗]: ∪

t′∈[0,t∗]
C(t′, ϵ) ⊇ [0, t∗].

By compactness, there is a finite subcover, say
C(t′1, ϵ1), ..., C(t′k, ϵk). Let

0 < η ≡ min
1≤i≤k

{
1

2
W 2(xi, t

′
i)

}
.

Any 0 ≤ t ≤ t∗ belongs to some C(t′i, ϵi), so
W 2(x, t) ≥ η > 0, for all x in |x − xi| < ϵi. We
can rewrite (11) in the form

g′n(t) = (n+ 2)

{∫ b

a

un+2

vn

(
f(u)

u
− f(v)

v

)
dx

−δ(n+ 1)

∫ b

a

un

vn+2
|vux − uvx|2dx

}
(17)

= (n+ 2)

{∫ b

a

un

vn+2

(
u2v2

(f(u)
u

− f(v)

v

)

−δnW 2(x, t)− δW 2(x, t)

)
dx

}
.

Since f(z)/z is bounded (say by M ), there exists an
N > 2 ∥ v ∥4∞ M/δη such that g′n(t) < 0, for all
n ≥ N and 0 ≤ t ≤ t∗. Hence, gn(t) ≤ gn(0) for
0 ≤ t ≤ t∗. As before, taking (n + 2)-nd roots, with
n ≥ N , we have

||u
v
||n+2 ≤ ||ϕ

v
||n+2.

Letting n → ∞, we get sup(a,b)(u/v) ≤
sup(a,b)(ϕ/v), and sup(a,b)(ϕ/v) < λ, so u(x, t) <

λv(x), for all x ∈ [a, b] and 0 ≤ t ≤ t∗. ⊓⊔
So, now that we have a start on the inequality (0 ≤

u(x, t) < λv(x) on 0 ≤ t ≤ t∗, a ≤ x ≤ b) we
show that we can extend the proof all the way to t1
and beyond.

Theorem 9 If f(z)/z is bounded, there exists a num-
ber λ∗, with 0 < λ < λ∗ < 1, so that if 0 ≤ ϕ(x) <
λv(x), where v is the positive solution to problem (6),
then the positive solution u(x, t) to problem (5) satis-
fies

0 ≤ u(x, t) < λ∗v(x), for all a ≤ x ≤ b,

and u(x, t) decays exponentially as t increases.

Proof: Let σ = 1 − λ, then by continuity, we
can select t∗ sufficiently close to t1, so that u(x, t) <
λ1v(x) for all x ∈ [a, b], 0 ≤ t ≤ t1, with λ1 < λ +
(σ/4). Repeat the constructions in Lemma 8 for the
interval [t1, t2] of the set E. An identical compactness
argument shows that g′n(t) < 0 for all t ∈ [t1, t∗1] with
t1 < t∗1 < t2. Again select t∗1 sufficiently close to t2 so
that u(x, t) < λ2v(x) for all x ∈ [a, b], t1 ≤ t ≤ t2,
with λ2 < λ1 + (σ/8). Continue in this fashion for
either the finite, or the countably infinite number of
intervals in E.

If the number of intervals is infinite, the procedure
above guarantees that u(x, t) < [λ + (σ/2)]v(x) <
v(x), for all t ≥ 0 and x ∈ [a, b], and we can select
λ∗ = λ + (σ/2). If the number of intervals in E is
finite, let tk be the largest value in E. Then, u <
λkv, with λk < λ∗, for x ∈ [a, b] and 0 ≤ t ≤ tk.
Now select t∗k+1 > tk as large as we want, and repeat
the argument in Lemma 8 on the interval [tk, t∗k+1]
getting u < λkv on 0 ≤ t ≤ t∗k+1 for all x in [a, b].

To show that the decay is exponential select n ≥
1 + max1≤j≤k Nj . The second term in parenthesis in
(17) will dominate the first, so

g′n(t) < −δ(n+ 2)

{∫ b

a

un

vn+2
W 2(x, t)dx

}
,

on [0, t∗].

Hence, denoting by η the minimum of the ηj , we have

g′n(t) < −δη
n+ 2

λ∗2||v||4∞

∫ b

a

un+2

vn
dx
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< −δη
n+ 2

λ∗2||v||4∞
gn(t).

Integrating this inequality from on [0, t∗], we get

gn(t) < exp(
−δη(n+ 2)

λ∗2||v||4∞
t)gn(0).

Taking the (n+ 2)-nd roots, we have

∥ u

v
∥n+2<∥ ϕ

v
∥n+2 exp(

−δηt

λ∗2||v||4∞
).

Letting n → ∞ yields

sup
(a,b)

u

v
≤ sup

(a,b)

(
ϕ

v

)
exp(

−δηt

λ∗2||v||4∞
)

< λ∗ exp(
−δηt

λ∗2||v||4∞
)

for all t in [0, t∗]. Thus, u(x, t) decreases exponen-
tially for t as large as we want. ⊓⊔

5 Conclusios
In this paper we have developed a technique for show-
ing when traveling waves do not occur in a nonlinear
parabolic system, even when the initial equation may
exceed an unstable solution of the associated steady-
state problem. We have shown that this method holds
when the nonlinear term f satisfies the condition that
f(z)/z is monotone, or even bounded (in R1).
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Appendix

In this appendix we prove that
(A):∥ f ∥Lp is increasing as p → ∞, and that
(B): ∥ f ∥Lp→ ∥f∥L∞ = ess supΩ |f(x)|.
We need Holder’s Inequality: Let µ be a mea-

sure on the space Ω, f ∈ Lp, g ∈ Lq, with p, q > 1
and (1/p) + (1/q) = 1. Then fg ∈ L1 and∫

Ω
fgdµ ≤∥ f ∥Lp∥ g ∥Lq .

(a proof of this theorem is in [9], pp. 119–120.)
In what we have been doing we shall consider the

positive measure dν = v2(x)dx on the set Ω. Suppose
that ∫

Ω
v2dx =

∫
Ω
dν = K.

Then define dµ = (1/K)dν, so that µ(Ω) = 1 in what
follows.

(A) Suppose 1 < p < q and f ∈ Lp. Then fp ∈
L1, and m = q/p > 1. Let m′ be such that (1/m) +
(1/m′) = 1. Then by Holder’s inequality∫

Ω
|f |pdµ ≤

(∫
Ω
(|f |p)mdµ

)1/m(∫
Ω
dµ
)1/m′

=
(∫

Ω
|f |qdµ

)p/q
,

from which it follows that ∥ f ∥Lp≤∥ f ∥Lq .
(B) Without loss of generality, by division, we

may assume that ∥ f ∥L∞= 1 (if it is finite).
There is a set Q with µ(Q) > 0 such that |f(x)| >

1− ϵ for x ∈ Q, with ϵ > 0 arbitrary. Then

∥ f ∥Lp≥
(∫

Q
|f |pdµ

)1/p
> (1− ϵ)(µ(Q))1/p.
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Letting p increase to ∞, we see that ∥ f ∥Lp→ 1 −
ϵ, and since ϵ is arbitrary, that implies that ∥ f ∥Lp

increases to 1 =∥ f ∥L∞ .
If ∥ f ∥L∞= ∞, then for arbitrarily large N there

is a set Q so that |f(x)| > N for all x ∈ Q. So,

∥ f ∥Lp≥
(∫

Q
|f |pdµ

)1/p
> Nµ(Q)1/p,

and ∥ f ∥Lp→ N as p → ∞. Since N is arbitrary, the
result holds.
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